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Structure of presentation

Metric – affine gravity: The results of previous joint work.

Physical interpretation of these results.

Future work for my PhD: The spectrum of the massless Dirac
operator.

Discussion.



Metric – affine gravity

Alternative theory of gravity.

Natural generalization of Einstein’s GR, which is based on a
spacetime with Riemannian metric g of Lorentzian signature.

We consider spacetime to be a connected real 4-manifold M
equipped with Lorentzian metric g and an affine connection Γ.

SPACETIME MAG={M, g , Γ}

The 10 independent components of the symmetric metric tensor
gµν and 64 connection coefficients Γλµν are unknowns of MAG.
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Metric – affine gravity

We define our action as

S :=

∫
q(R) (1)

where q(R) is a quadratic form on curvature R.

The system of Euler – Lagrange equations:

∂S

∂g
= 0, (2)

∂S

∂Γ
= 0. (3)

Objective: To study the combined system of field equations (2),
(3) which is system of 10+64 real nonlinear PDEs with
10+64 real unknowns.
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New representation of the field equations

We write down explicitly our field equations (2), (3) under
following assumptions:

(i) our spacetime is metric compatible,

(ii) curvature has symmetries

Rκλµν = Rµνκλ , εκλµνRκλµν = 0,

(iii) scalar curvature is zero.
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Main result so far

The main result is

Lemma

Under the above assumptions (i)− (iii), the field equations (2),
(3) are

0 = d1WκλµνRicκµ + d3

(
RicλκRic ν

κ −
1

4
gλνRicκµRicκµ

)
(4)
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New representation of the field equations
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where d1, d3, d6, d7, b10 are some real constants.



The first task

We are going to try to generalize pp–waves as follows

Conjecture

There exists a new class of spacetimes with pp–metric and purely
axial torsion which are solutions of the field equations (2), (3).

Expectations:

to prove or disprove conjecture above.

to give a physical interpretation of the new solutions and
compare them with existing Riemannian solutions.
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Physical interpretation

Massless Dirac action:

Sneutrino := 2i

∫ (
ξaσµ

aḃ
(∇µξ

ḃ
)− (∇µξa)σµ

aḃ
ξ
ḃ
)
.

In Einstein–Weyl theory the action is given by:

SEW = Sneutrino + k

∫
R.

We obtain the well known Einstein–Weyl field equations

∂SEW

∂g
= 0, (6)

∂SEW

∂ξ
= 0. (7)



Physical interpretation

Massless Dirac action:

Sneutrino := 2i

∫ (
ξaσµ

aḃ
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aḃ
ξ
ḃ
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The massless Dirac operator

The massless Dirac operator is the matrix operator

W = −iσα
(

∂

∂xα
+

1

4
σβ

(
∂σβ

∂xα
+

{
β

αγ

}
σγ
))

. (8)

The massless Dirac operator (8) describes a single massless
neutrino living in 3-dimensional compact universe M.

The eigenvalues of the massless Dirac operator are the energy
levels.
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The massless Dirac operator

Let M be a 3-dimensional connected oriented manifold equipped
with a Riemnnian metric gαβ and let W be the corresponding
massless Dirac operator (8).

Two basic examples when the spectrum of W can be calculated
explicitly:

the unit torus T3 equipped with Euclidean metric.

the unit sphere S3 equipped with metric induced by the
natural embedding of S3 in Euclidean space R4.

In both examples the spectrum turns out to be symmetric about
zero.
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The massless Dirac operator

Physically, this means that in these two examples there is no
difference between the properties of the particle (massless
neutrino) and antiparticle (massless antineutrino).

For a general oriented Riemannian 3-manifold there is no reason
for the spectrum of massless Dirac operator W to be symmetric
(M. F. Atiyah, V. K. Patodi and I. M. Singer).

Producing explicit examples of spectral asymmetry is a very
difficult task.
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The massless Dirac operator

Pfäffle: the example based on the idea of choosing a 3-manifold
with flat metric but highly nontrivial toplogy!

Barakovic , Pasic , Vassiliev : the simplest possible topology and
construct an explicit example of spectral asymmetry by perturbing
the metric!

Spectral asymmetry of the massless Dirac operator on the unit
torus T3 is achieved: Spectral asymmetry of the massless Dirac
operator on a 3-torus, D. Vassiliev, R.J.Downes and M.Levitin.
Available as preprint arXiv:1306.5689.
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The plan

Try to achieve the spectral asymmetry of the massless Dirac
operator (8) on the unit sphere S3.

The ideas: the metric which depends to small parameter ε, Hopf
fibration.
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Welcome to Tuzla!
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